Booster Fast Loss Monitoring

PIP Booster Workshop R.J. Tesarek 11/23/15

Fast Loss Monitor Module

Fast Loss Monitors:

sensitive to losses in single RF bucket (time resolved)

2nd Generation Module Design:

- 2 PMTs and bases
 - Hamamatsu H1949
 - typical gain 2.0e7
- each PMT views 1 scintillator each ~12mm thick
- active area: 50.8mm x 152.4mm
- counters plateaued (V_{thr} = 30mV) to be efficient for MIPs through 1 scint. plate
- assembly surrounded by 5mm thick FR-4 (G-10)

Advantages:

- can be sensitive to single minimum ionizing particle (MIP)
- robust assembly (can be handled by gorilla)
- less sensitive to activation products
- very low noise rates (when PMTs in coincidence)
- probe of loss dynamics is a by-product of fast detection

Disadvantages:

scintillator damaged by radiation (annual replacement?)

Construction/Calibration details in beams-docDB 4993

Module Schematic

Module Installation (Collimators)

PIP Workshop

R.J. Tesarek

11/23/15

Booster Notching Region

Booster Cycle Overview (3/11/15)

Features in Booster Cycles (3/11/15)

Features in Booster Cycles (3/12/15)

PIP Workshop R.J. Tesarek 11/23/15

7

Scale of Fast Losses

PIP Workshop R.J. Tesarek 11/23/15

8

PMT Signals 3/31/15 "Loss Event"

Booster Cycle Fast Losses 11/13/15

Injection Fast Losses 11/13/15

Module Readout and Gating

Need quantitative information for tuning and studies

- MADC analog system too slow
- Use AD 333 100MHz scalers and discriminate PMT signals

Instrumentation measures rates/booster cycle (independent of beam):

$$R(i) = \frac{s(i) - s(i-1)}{INJ(i) - INJ(i-1)} \cdot \frac{f_{CLK}}{CLK(i) - CLK(i-1)}$$

clock: 38.768 kHz TTL

temp compensated oscillator

- Rates average signals over period between \$12 events (~1.33s), normalized per booster cycle
- · Use 333 scaler module for readout
- Rates normalized by number of booster cycles
- Clock: a periodic signal with a well known (stable) frequency. Because the booster RF is modulated it can't be a clock signal.
- Booster RF: Booster RF signal (logic level) to provide background rejection from non-prompt particles. Also counts "hits" for time-over-threshold discriminator.
- Injection: Signal that beam may be injected into the booster (beam may not be present)
- Gates: Time intervals of interest to measure rates in counter modules. To be fully defined, we need a starting time (in the booster cycle) and a duration.
- →For instrumentation to be effective, we want to sample periods that are constant (VERY similar) for every booster cycle.

Fast Loss Rates in ACNET

Gates before summer shutdown (instruments at 5-3 and 6B)

Gate	tmin	tmax	Comment
1	Inj	Inj + 300μs	injection losses*
2	Inj + 300μs	Inj + 800μs	losses around 400µs structure*
3	Notch	Notch + 500µs	losses around notch formation
4	Notch + 500µs	Notch + 2800µs	losses around notch formation (separated for timing)
5	Notch + 2800	BES	losses in rest of booster cycle#

Gates after summer shutdown (instruments at 5-1, 5-3, 6A, 6B, 7)

Need discussion:

- · Current booster cycle has losses from different activities in cycle overlapping.
- · Limited number of gates/333 modules

Candidates:

- · Injection
- · RF capture
- · Notching
- Transition crossing
- · Extraction

Fast Loss Rates in ACNET

R.J. Tesarek

11/23/15

14

PIP Workshop

Fast Loss Rates in ACNET

Gate 3 N -> N+500µs

Notch at 5,200µs

Rate = 0 when no notch present

Gate 4 N+500 -> N+2,800μs

Gate 5 N+2,800µs -> BES Data shown for time interval: 3/31 17:00 thru 4/1 13:00

Note:

Correlation between some features observed at injection and features around notch formation and late in the cycle for these data.

R.J. Tesarek

11/23/15

Plans & Summary

Plans (next few weeks)

- Complete installation/commissioning of systems
 - notcher system (ready for 'scope-permanent installation)
 - · collimator system
- determine gates for readout (collimator system)
- · cable readout for collimator system (expanded system over summer shutdown)
- expect system fully operational early Dec.

Long term plans

- autopsy counters exposed in booster for period 2/15 7/15 (radiation damage)
- begin making detector replacements
- explore rad-hard alternative to scintillator/PMT detectors (underway)

New very fast loss instruments installed

- single RF bucket resolution on losses
- interesting data from 'scope traces
- rate measurements tested yield interesting results
- commissioning underway for collimator system

Need catchy name for system

Acknowledgements

The following folks contributed time/resources (tools) an information used in this talk

- · C.Bhat
- S.Chaurize
- · R.Crouch
- · C.Drennen
- · D.Dick

- V.Kapin
- E.Hahn
- D.Johnson
- T.Johnson
- · C.Ornelas

- · W.Pellico
- T.Sullivan
- M.Syphers
- K.Triplett

Back Up Slides

Two Stage Collimation

My Understanding:

- Target disrupts beam halo
- Absorber absorbs disrupted beam
- Target/Absorber monitors "observe" target and absorber collimators
- → Absorber should "shadow" target (absorber farther from beam core)

Module Placement

Considerations:

- Observe particles from single RF bucket
- Low detection threshold (single MIP)
- Wide variation in beam kinetic energy (400 - 8000 MeV).
- →Place detectors < 20cm from loss source

1 MIP

Detection

Module Calibration

Understand individual detector response

- Pulse height vs HV

PIP Workshop

R.J. Tesarek

11/23/15

Physical Setup

Typical Calibration (CDF030)

Notes:

- Only relative efficiency is measured and includes a component due to geometric acceptance of cosmic rays and may differ from setup to setup.
- Noise rates measured by counting for 1 minute and dividing by 60.
- Pulse height determined by peak-to-peak measurements w/ an oscilloscope averaging over 512 4-fold coincidences.

Ref: C.Ornelas, beams-doc-4993

R.J. Tesarek

11/23/15

Readout Logic (Details/Module)

Clip Line Pulse Narrowing

Cable Length = 235ns

Clipline R = 50Ω

#samples = 512

Cable Length = 235nsClipline R = 10Ω #samples = 512

Injection Fast Losses 11/13/15

Notch Formation Fast Losses 11/13/15

